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Fractional Chern insulators (FCIs)—the lattice analog of the fractional quantum Hall states—
form as fractionalized quasiparticles emerge in a partially-filled Chern band. This fractionalization
is driven by an interplay of electronic interaction and quantum geometry of the underlying wavefunc-
tions. Bilayer graphene with an interlayer twist near the magic angle of 1.1° hosts diverse correlated
electronic states at zero magnetic field. When the twist angle exceeds 1.3°, the electronic bandwidth
is sufficient to suppress the zero-field correlated states. Yet applying a magnetic field can restore
the importance of electron-electron interactions. Here, we report strongly-correlated phases when a
1.37° twisted bilayer graphene sample is tuned to near half a magnetic flux quantum per moiré cell,
deep into the Hofstadter regime. Most notably, well-quantized odd-denominator FCI states appear
in multiple Hofstadter subbands, over unusually large ranges of density. This suggests a mechanism
beyond disorder is stabilizing the fractional states. We also observe a bending and resetting of the
Landau minifan reminiscent of the cascade of Dirac resets observed in magic-angle samples near
integer filling at zero field.

INTRODUCTION

Twisted bilayer graphene (TBG), the archetypal
strongly-correlated moiré heterostructure, displays an as-
tonishingly diverse set of correlated electronic and topo-
logical phases [1–12]. The electronic moiré miniband
structure depends sensitively and predictably on the
twist angle. Near the magic angle of 1.1°, the large moiré
length scale enables tuning the density of charge carriers
through entire minibands and the density of magnetic
flux to on order one flux quantum Φ0 = e/h per moiré
cell, where e is the elementary charge and h is Planck’s
constant. In this “Hofstadter’s butterfly” regime [11, 13–
24], the energy spectrum exhibits a fractal structure with
field-induced topological subbands. Gaps in the fractal
spectrum appear at fluxes and densities described by Dio-
phantine equations of the form n/ns = s + tΦ/Φ0 [25].
Here, ns = 1/A, Φ = BA, A is the moiré unit cell area, B
is the magnetic field normal to the plane of the samples,
s is the density offset at zero flux, and t is the Chern
number associated with the gap. We notate these Středa
lines as (s, t). Within such a gap, the Hall conductance
is expected to be quantized to σxy = te2/h [26].
Integer t Středa lines have been observed in TBG

at a range of twist angles. Some of these states are
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not describable by single-particle models, as symmetries
are broken by electronic interactions [7, 12, 22, 24, 27].
Středa lines with fractional t and nonzero s are more
exotic and are referred to as fractional Chern insulators
(FCIs). Analogous to fractional quantum Hall (FQH)
states, where s = 0, FCIs host fractionalized excita-
tions [28]. Only a few examples of such states in moiré
materials have been experimentally reported: twisted
MoTe2 [29–31] and multilayer twisted graphene aligned
with hexagonal boron nitride (hBN) [8, 19, 32, 33].

TBG’s viability as a platform for FCIs remains an open
question [34]. Recently, fractional t states have been ob-
served in high-quality magic-angle TBG [35]. These oc-
curred in Landau levels originating from charge neutral-
ity (s = 0), reminiscent of ordinary FQH. So far, FCIs
with s ̸= 0 have not been clearly demonstrated in exper-
iments on TBG devices not aligned to hBN.

In Refs. [36] and [37], we presented magnetotransport
measurements and single-particle calculations for a TBG
sample twisted to near 1.37°, where the miniband width
is large enough (near 100 meV) to suppress correlated
electronic states near zero magnetic field [1, 3, 36]. In
this work, we further explore that same sample, now at
extremely high magnetic fields, demonstrating many B-
induced strongly correlated states. Most notably, at mag-
netic flux near half a magnetic flux quantum per moiré
unit cell we observe plateaus in Hall resistance corre-
sponding to ±8/3 and −8/5, quantized to within a few
tenths of a percent, along with possible −4/3 plateaus.
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FIG. 1. Strained TBG in the Hofstadter butterfly regime. (A) Dependence of the longitudinal resistance as a function
of density and field. We indicate Středa lines (s, t) = (0, ±4) with dashed lines. The metallic top gate began to leak to the TBG
above 25 T, so we reduced its voltage range, leaving the greyed out regions. See the supplement for a schematic description
of quantum Hall gaps (Fig. S1), the behavior of other contact pairs (Figs. S2 and S3), a comparison with the lower-field data
presented in Ref. [36] (Fig. S4), and a schematic of the device with our inferred twist angles as extracted from the Landau fan
diagram (Fig. S5). (B) Computed density of states dn/dµ for the spectrum in Fig. 3A with an arbitrary linear color map.
Gaps show up as dark lines. See Sec. III for details on the computation.

The ±8/3 plateaus in particular extend over a strikingly
broad range of density, up to half an electron per moiré
unit cell, rather than following a narrow, well-defined
Středa line. Integer quantized states have been known
to extend over a broad range of densities, outcompeting
fractional states that might be expected at those den-
sities. This “re-entrant quantum Hall effect” has been
explained as a consequence of a Wigner crystal coexist-
ing with a filled Landau level [38, 39], a scenario origi-
nally termed a partial Hall crystal [40]. However, in the
sample we study here the integer states are less robust
and broad than the 8/3 fractional states. In Sec. V we
discuss several mechanisms that might be responsible for
the novel and surprising extended FCI regions.

I. LONGITUDINAL TRANSPORT

In the sample we study, longitudinal resistivity as a
function of carrier density and magnetic field between 14
and 28 T ranges from below our measurement floor of a
few ohms within quantum Hall gaps to hundreds of kilo-
hms at band edges and near charge neutrality (Fig. 1A).
Here, we focus on specific contact pairs within this 20-
terminal Hall bar that demonstrated the sharpest low-
field transport in Ref. [36]. For our twist angle of 1.37°,
Φ/Φ0 = 1 occurs at nearly 45 T, so the field range in
our measurement corresponds to flux ratios between 0.31
and 0.62. We indicate the most prominent Středa lines,
(s, t) = (0, ±4), which persist without closing down to
near-zero field (Fig. S4).
For comparison, we show the computed Wannier plot
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FIG. 2. Fractional Chern insulating Hall plateaus. (A) Longitudinal resistance from Fig. 1 replotted in grey-scale.
Superimposed on the longitudinal resistance are locations where the Hall resistance for a neighboring contact pair is quantized
to within 1% of ±8/3 in red and blue, respectively. A clustering algorithm has been applied to remove spurious points (see
Sec. S3). The abrupt loss of quantization at Φ/Φ0 between 1/3 and 2/5 corresponds to a pause in the measurement of several
hours. This, along with the noise above 1/2, are described in Sec. S2. (B, C) Hall resistance and longitudinal resistivity as a
function of density at 18.5 T (Φ/Φ0 = 0.41, black dashed lines in A).

in the same field range (Fig. 1B). The computed density
of states dn/dµ should show patterns similar to those
seen in resistivity, but we do not directly calculate trans-
port from our model as we did in [37] for lower mag-
netic fields. Our model broadly captures the splitting
and bending behavior of the Landau levels emitting from
half flux and n/ns = 0, where open orbits from uni-
axial heterostrain and Zeeman splitting play the role of
anisotropic hopping and energetic splitting as described
in Ref. [36]. The model predicts a number of prominent
gaps that we discuss in Sec. III.

In the supplementary materials we describe other
striking phenomena such as Brown-Zak oscillations,
symmetry-broken Chern insulating Středa lines with s =
±1/2, t = ±3, and correlated Hofstadter ferromagnets.

II. FRACTIONAL CHERN INSULATORS

In Fig. 2A, we overlay in blue and red the regions where
the Hall resistance is quantized to within 1% of −3h/8e2

and +3h/8e2 respectively. We apply an intentionally-
conservative clustering threshold algorithm so that al-
most all of the pockets marked with color represent well-
quantized plateaus of ±8/3 rather than regions where
the Hall resistance incidentally passes through quantized
values. These fractional Hall plateaus coincide with low
longitudinal resistance (shown in gray). See Sec. S3 for
details and Fig. S21 for unfiltered data.

Fig. 2 panels B and C show line cuts of Ryx and Rxx at
18.5 T. In addition to the aforementioned ±8/3 plateaus,
a number of integer plateaus are visible, along with a
small −8/5 plateau. Strikingly, the ±8/3 plateaus are
quantized over larger ranges of density and field than any
integer state. For a discussion of the degree of quantiza-
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tion, other fractions, and the behavior in other contact
pairs, see Secs. S10, S11, and S7, respectively.

Regions where the Hall resistance is (fractionally)
quantized typically coincide with suppressed longitudinal
resistance in the four adjacent contact pairs (see Fig. 1
and Sec. S7). Though measurements from neighboring
longitudinal probes vary subtly, neighboring Hall probes
exhibit strikingly different behavior: those just 3 mi-
crons away from the main Hall pair we focus on in this
manuscript exhibit poor quantization, even for integer
quantum Hall states (Fig. S7), possibly due to mixing
of the longitudinal resistance into the Hall measurement
because of spatial variation in twist angle [41]. We there-
fore suspect that the main Hall pair of this manuscript
contacts a region of unusually high moiré uniformity.

We defer a detailed discussion of potential explanations
of the extended fractional phenomenology to Sec. V.

III. HOFSTADTER MODEL

To understand the Hofstadter bands we would expect
without interactions we perform bandstructure compu-
tations within a single-particle model. Our effective con-
tinuum model from Ref. [37] which accounted for uni-
axial heterostrain can be extended into the Hofstadter
regime [42]. Here we also incorporate biaxial heteros-
train, lattice relaxation, and electron-hole asymmetry so
that the locations of the three van Hove points near
B = 0 on the hole side of the charge neutrality point
differ from those on the electron side [43, 44], as is seen
in the experiment [36, 37]. We fully parameterize the
2×2 moiré deformation matrix as a function of twist an-
gle, uniaxial heterostrain magnitude and direction, and
biaxial heterostrain magnitude. We then search for struc-
tural parameters that yield bands with van Hove points
at densities matching those identified in Ref. [37]. We
find a unique best fit—0.24 ± 0.02% uniaxial heteros-
train at 45±4° and 0.3±0.1% biaxial heterostrain—that
places all six computed van Hove densities within our ex-
perimental bounds. Nearby moiré deformation matrices
yield similar high-field Hofstadter spectra, so they do not
further constrain our determination of structural param-
eters.

Fig. 3A shows the Hofstadter spectrum computed for
this set of moiré parameters, over a range of flux filling
corresponding to the magnetic field range of our measure-
ments. We include a Zeeman splitting term ∆E = gµBB,
with g = 2 as expected for electron spins in graphene
or other forms of carbon [45]. Spin-up electronic states
(aligned with the external field) are shown in blue, and
spin-down states in red. Computing the density of states
dn/dµ of this spectrum facilitates comparison with our
transport data (Fig. 1). Particularly, the computed den-
sity of states qualitatively captures the extent in field and
density of many well-formed gaps and subtler features
in transport. Not every feature in our non-interacting
theory calculations matches experiment. Notably, the

calculations show (4, -4) and (0, -4) as more prominent
gaps than (0, 4) and (-4, 4). In transport the (0, -4)
Středa feature is indeed more prominent than (-4, 4).
But the (0, 4) Středa feature is more prominent than
(4, -4) (Fig. 1A), suggesting band renormalization effects
beyond the single-particle picture [46].
Our model suggests that even without electron-

electron interactions, gapped ground states with t = 0
may exist in which the net spin of all filled bands is
non-zero. We identify two such regimes, marked with
B and C respectively in Fig. 3A. In each case, just below
half flux the Zeeman splitting exceeds the bandwidth of
a subband separating two gaps associated with Středa
lines that cross at half flux. The Středa parameters for
the crossing gaps in these two regimes are (B) (-4, 4)
and (0, -4) (C) (0, 4) and (4, -4). The configuration
at each of (B) and (C) is a quantum spin Hall insulator,
though with not one but two pairs of counter-propagating
modes. We might therefore expect quantized longitudi-
nal resistance Rxx = h/4e2 and zero Hall resistance. The
Hall resistance is indeed zero below half flux near den-
sity n/ns = ∓2 (Fig. 3B and C lower panel, though the
zero plateau in C is offset to slightly higher density). At
n/ns = ∓2, in longitudinal resistance a narrow feature
emanates downward from half flux(Fig. 3B and C upper
panel). However, the longitudinal resistivity is not quan-
tized as expected from our model, but is instead very
low, often below our measurement floor of roughly 1 Ω
(in other contact pairs we see similar features but the
minima are higher, see Sec. S9). We see similar verti-
cal features in Rxx at quarter flux where the (±8, ∓8)
and (0, ∓8) gaps intersect (see Fig. S4). Given this un-
expected behavior of longitudinal resistivity we cannot
prove that some or all of these states in our experiment
are QSH-like. If they indeed are QSH-like, our measure-
ments would suggest that back-scattering is strongly sup-
pressed not only along an edge (as expected in an ideal
QSH system) but also at the ohmic contacts that serve
as voltage probes, either because the edge modes do not
enter these contacts or because the efficient spin relax-
ation normally expected within such contacts is somehow
blocked.

IV. LANDAU LEVEL RESET AT HALF FLUX

We observe a bending Landau minifan emitting from
n/ns = 2,Φ/Φ0 = 0.5, where the (0, 4) Středa line
intersects half-flux (Fig. 4). In longitudinal transport
(panel A), the minifan pointing toward higher density
and higher flux bends non-monotonically back toward
half flux. Such bending is also visible in the minifan
pointing toward lower flux, but in the following discus-
sion we focus on the more prominent upward-pointing
minifan. There is a small kink where the bending Lan-
dau minifan would have intersected the (1, 3) Středa line
near n/ns = 2.5, and a complete reset at n/ns = 3.
In Hall measurements (panel B), we observe h/4e2 and
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FIG. 3. Computed Hofstadter spectrum and candidate quantum spin Hall state. (A) Computed energy levels for
valley K, θ = 1.35◦ with 0.24% uniaxial heterostrain at 45° and 0.3% biaxial heterostrain (q ≤ 72), as described in the text.
Spin up electrons are shown in blue, and spin down electrons are shown in red. The gaps at (s, t) = (0,−4) and (4,−4) are
labeled. α, β, and γ indicate the Hofstadter subbands which host the largest pockets of ±8/3 quantization shown in Fig. 2.
Because of the Zeeman spin-splitting, it is possible for the net spin of all filled bands associated with a given gap to be non-zero.
A trivial gap (t=0) with a net spin is reminiscent of quantum spin Hall. Two such gaps are indicated: (0, ±2). See Fig. S20
for the full range of fields. (B-C) Dependence of the longitudinal resistance (top panels) and Hall resistance (bottom panels)
as a function of density and field centered on the two quantum spin Hall candidate gaps predicted from (A). In (B), below half
flux, we observe a strong vertical suppression of longitudinal resistance coincident with a small plateau of zero Hall resistance
at n/ns = −2. In (C), we observe low longitudinal resistance along a vertical line, however the Hall resistance is not zero at
the same densities.

h/8e2 integer quantum Hall plateaus following the same
bending behavior, including a third reset near n/ns = 3.5
(see also Fig. S8).

This reset behavior is not the same bending behav-
ior noted in Ref. [36] and cannot be understood in a
non-interacting model of rigid bands. It is reminiscent
of the spontaneous flavor polarization at integer fill-
ing in magic-angle twisted graphene structures at zero
field [2, 3, 47, 48]. However, though spontaneous polar-
ization into an isospin flavor can lead to reset behavior,
it does not explain the observation that a dip in longitu-
dinal resistance coincident with quantized Hall resistance
follows a nonlinear trajectory in the space of filling and
flux; an incompressible Chern gap must follow the appro-

priate Středa relation.

For each of the four combinations of spin and valley,
the two zero-field moiré minibands split into four magne-
tosubbands at half flux, reflecting a unit cell doubling in
the Hofstadter spectrum. Because of this unit cell dou-
bling, integer filling of the highest-energy magnetosub-
band (two valley-degenerate subbands split by Zeeman)
corresponds to fillings n/ns = 2.5, 3, 3.5, and 4 refer-
enced to the original unit cell. At n/ns = 3, if the carri-
ers within this band fully polarize into half of the avail-
able flavors, we expect a total Chern number of all filled
bands of 2. One can see this from the fact that this gap
must be the same as the (2, 2) Hofstadter subband ferro-
magnet state emanating from zero field [9, 24]. Landau
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Detail of all contact pairs in Figs. S10, S11, and S12.

levels emanating from half flux carry C = 2, therefore we
would expect a four-fold degenerate fan with an offset of
2 (t = ±2, 6, 10, . . .) emanating from n/ns = 3. In our
measurements, the Landau levels emanating from the re-
set point are indeed fourfold degenerate, with (3,±6)1/2
and (3,±10)1/2 being the only visible gaps. Here, we use
the subscript 1/2 to indicate we are using s to reference
a density offset at half of a flux quantum per moiré unit
cell.

The resets do not all appear at exactly half flux.
Rather, the reset seen in both longitudinal and Hall
measurements near n/ns = 2.5 is just above half flux,
and the reset seen in Hall at n/ns = 3.5 is just below
half flux. Each reset aligns with an extrapolation of a
Hofstadter ferromagnetic state—(1, 3), (2, 2), and (3, 1),
respectively—from zero field (dashed lines).

V. DISCUSSION OF POSSIBLE MECHANISMS
FOR EXTENDED FCI

We turn now to the 8/3 fractional state which sur-
prisingly persists over a larger range of density than any
integer state. A 18.5 T linecut near 2/5 flux (Fig. 2B,
C) traverses the three largest pockets of quantization in
the Landau fan diagram, centered at n/ns = −1.3, 1.9,
and 2.6. These occur upon doping into the next band
above the Hofstadter gaps (0,−4), (0,+4), and (+4,−4),
respectively. Assuming the total Chern number ±8/3 ex-
tracted from measured Hall resistance is the sum of the
Chern number ∆t of the FCI and that of the gapped in-

teger state below, the Chern numbers of the three FCI
states would be 4/3 = −8/3− (−4), −4/3 = 8/3−4, and
again 4/3 = −8/3 − (−4), respectively. In Fig. 3A, we
mark with labels α, β, and γ, respectively, the parent
spin-polarized Hofstadter subbands at 2/5 flux within
our single-particle model that we believe host the FCI
states. If there is minimal mixing of bands from inter-
actions, we are in each case doping into a spin-polarized
(all blue in the figure) but valley-degenerate band. Thus
the 4/3 Chern number referenced above could represent
two copies of a |∆t| = 2/3 FCI. It could instead be one
copy of 4/3, or even four copies of 1/3 if we could recover
a larger degeneracy.

Unlike ordinary Landau levels, the three subbands we
postulate as parents for the FCIs have finite bandwidth,
even without disorder. Subband γ is the narrowest at
∼ 1 meV. The others have width ∼ 2 meV at 2/5 flux,
and the associated FCIs extend over a range of flux for
which the bands broaden further and even overlap with
nearby subbands, factors we would ordinarily expect to
disfavor formation of FCI states.

Specifically, subband α and its corresponding Hall
plateau are enigmatic. We observe an enormous region
of quantization (∆n/ns ∼ 0.5), larger than any other
plateau—integer or fractional—between 0 and 28 T (see
Fig. S8). An incompressible gap is expected to follow a
well-defined Středa relation with slope equal to the to-
tal Chern number of the occupied bands. However, the
breadth of this plateau stymies assigning a specific (s,
t). To retain quantization as carrier density is tuned,
the excess carriers must go into localized states. What
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states are doping into here? The obvious culprit would be
localized states from disorder. While we cannot explic-
itly rule out disorder, it is unlikely that localized states
from disorder would specifically extend these ±8/3 frac-
tional gaps so much more dramatically than other gaps
in the spectrum. In Sec. S12 and Sec. S13, we discuss
the effects of domain walls and spin-dependent transport,
respectively. We consider both scenarios possible but un-
likely as explanations of our data.

A more likely reason for these fractional plateaus to
be so large is the formation of a fractional partial Hall
crystal: a Wigner crystal in a FCI background. In this
scenario, upon doping with respect to primitive filling
of the FCI gap, the strongly-interacting dilute system of
quasiparticles forms a Wigner crystal. As this crystal is
topologically trivial, insulating, and compressible, it does
not contribute to transport, so quantized Hall resistance
is retained or restored at the value associated with the
FCI state [40].

This mechanism has been invoked to explain reentrant
quantum Hall in 2D electron gases [38, 39], but for the
present system we have two complicating factors. First,
the presence of a moiré potential might be expected to

favor forming a Wigner crystal not at a continuous range
of density but specifically at rational fractional fillings
of the moiré. We instead observe sustained quantization
over a range of density that would encompass many sim-
ple fractions. Second, this plateau occurs in a regime of
two valley-degenerate Hofstadter subbands, with band-
width comparable to Zeeman splitting. There could thus
be more than one way for the multiple flavors to com-
bine into a fractional state, reminiscent of ν = 2/3 frac-
tional quantum Hall in a seminconductor double quan-
tum well [49]. Understanding the nature of the extended
FCIs and the conditions for a subband to fractionalize
warrant further experimental and theoretical investiga-
tion. If the electronic solid picture we suggest is correct,
disentangling the precise nature of the solid, including
whether it is partially or entirely composed of a second
flavor of the composite fermions themselves, will be an
important challenge.
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SUPPLEMENTAL MATERIAL

S1. Generalized Diophantine and Definitions

For concreteness, we explicitly follow the terminology
used in [40], which we reproduce here. For a number of
carriers per unit area ρ̄, we write a generalized Diophan-
tine equation as

ρ̄ = νsρϕ + ηsA
−1
0 , (1)

where νs and ηs are rational numbers, ρϕ is the den-
sity of flux quanta per unit area, and A0 is the unit cell
area associated with the spatially modulated (crystalline)
electron density. The Hall conductance is given by

σxy = −νse
2/h. (2)

Both an incompressible (fractional) quantum Hall liq-
uid and a Hall crystal are described by the case where
νs ̸= 0 and ηs = 0. In the latter case, the system sponta-
neously breaks translation symmetry with density fluctu-
ations set by ρϕ while maintaining a non-zero Hall con-
ductance. In an anomalous Hall crystal, time reversal
symmetry breaks spontaneously in addition to transla-
tion symmetry breaking. A Wigner crystal, however, is
described by νs = 0 and ηs ̸= 0 and therefore must have
vanishing Hall conductance.
A partial Hall crystal is, in some sense, an intermediate

phase combining the properties of both. It is described
by νs ̸= 0 and ηs ̸= 0. Therefore, it will have a non-
zero Hall conductance and spatially modulated electron
density. Given the Wigner crystal background, a partial
Hall crystal will be compressible if the spatial modulation
of the electron density is not strongly pinned to a disorder
potential.

S2. Transport measurements

We measured the sample in the SCM-32T system at
the National High Magnetic Field Laboratory (MagLab).
Although the hybrid magnet had a nominal maximum
field of 32 T, because we were one of the early users of
the system, we were restricted to a maximum field of
28 T. We used the top-loading dil fridge insert with a
base temperature of 50 mK at the mixing chamber plate.
The sample probe had 16 DC measurement wires, so we
were not able to measure every contact pair in our device.
The probe did not feature cold low-pass filters. We

included low-pass filters (borrowed from another user and
described in Ref. [50]) at the breakout box, however there
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was still RF pickup between the breakout box and the
sample. This was most evident at 8 PM every day, when a
nearby radio station turned down their output power and
our measurement noise decreased. For example, in Fig. 1,
we crossed 16.8 T at 8 PM, where there is a noticable
increase in sharpness of features.

In addition to RF noise blurring our measurements,
they also suffered from low-frequency noise within the
measurement instruments themselves. This noise ap-
peared in the current measurement for Fig. 2 (Fig. S6),
but not in the associated voltage measurements for all
densities/fields, meaning that the noise was not in the
current itself. Thus, for Fig. 2, we do not use the current
measurement, but instead divide by a constant 1 nA.

We sourced 1 nA of current at near 5 Hz using an
SR860, sourcing one volt across a 1 GΩ resistor. We
used SR550 and 560 voltage preamplifiers and SR830
and SR860 lock-in amplifiers to measure voltages. We
used an Ithaco 1211 current preamplifier and an SR860
to measure current.

We took the first set of measurements on many con-
tact pairs at once (Figs. S2 and S3). The Hall measure-
ments in Fig. 2 were taken in this set. We then found
that only measuring one contact pair at a time greatly
reduced noise. We therefore took the measurement in
Fig. 1, consisting only of a single longitudinal resistance
measurement, separately.

We show a comparison between the data taken at
MagLab with data taken in our own system at Stan-
ford in Fig. S4. The system at Stanford both has a lower
base temperature and high quality filters at the mixing
chamber stage. There are two stages of filtering: the
wires are first passed through a cured mixture of epoxy
and bronze powder to filter GHz frequencies, then low-
pass RC filters mounted on sapphire plates filter MHz
frequencies. As a result, the Landau fan appears much
sharper. The resistivity near charge neutrality is nearly
an order of magnitude higher in our measurements at
Stanford compared to those at MagLab.

There is one notable difference between how the mea-
surements were performed at Stanford vs MagLab. At
Stanford, our contacts became highly resistive when the
graphite back gate was held at ground, so we fixed the
graphite back gate to 1.5 V for the measurements. At
MagLab, we found that the contacts were an order of
magnitude lower resistance than what we saw at Stan-
ford, so we left the graphite back gate at ground. The
difference in contact resistances was likely a function of
the higher effective temperature.

S3. Cluster filtering

The unfiltered data from Fig. 2 can be seen in Fig. S21.
To filter the data, we begin by identifying points where
the Hall resistance Rxy falls within some window of our
desired value (±1% of ±3h/8e2 in this case). Binary di-
lation is applied to the windowed data such that nearest-

neighbors within this masked array are now included.
Each contiguous cluster of the dilated data set is then
identified, and, if it does not contain above a threshold
number of points, the original undilated points are omit-
ted from the final filtered data set. Because of the dila-
tion and generous threshold, this filtering primarly serves
to remove isolated data points with no next-nearest-
neighbor point within the window.

S4. Brown-Zak oscillations

At rational values of Φ/Φ0 = p/q, the system can
be described in terms of Bloch states in a q-times en-
larged magnetic Brillouin zone [51, 52]. In transport,
this manifests as oscillations in conductivity at simple
field fractions and constant density. These “Brown-
Zak” oscillations have been observed in graphene/hBN
superlattices[53–55]. The homogeneity and amount of
disorder in the sample affects the maximum q for which
oscillations will be visible, because as q increases, the
size of the magnetic Brillouin zone increases relative to
the carrier mean free path [54].
We observe Brown-Zak oscillations at Φ/Φ0 = 1/3,

2/5, 1/2, and 3/5 (panel B, horizontal dotted lines). Of
note, the Brown-Zak oscillations at 1/2 flux appear only
between n/ns = ±2. The density-dependent amplitude
of the oscillations is a probe of the carrier group velocity
and therefore the miniband width [54]. So, where we do
not see Brown-Zak oscillations, we should expect flatter
bands and thus stronger electron correlations. In general,
we observe more and stronger Brown-Zak oscillations on
the electron side of charge neutrality compared to the
hole side, consistent with the basic principle that the hole
bands are flatter than electron bands in TBG.

We observe a similar set of Brown-Zak oscillations in
contact pairs 16-17, 7-8, and 17-18 (Figs. 1 and S2).
Contact pair 6-7 has generally blurrier features, and has
broad oscillations only at Φ/Φ0 = 1/2 and 1/3. Contact
pair 13-14 does not show clear oscillations, likely both
because of inhomogeneity and also closer proximity to
the magic angle.

It would be convenient if the Brown-Zak oscillations
were ideally sharp features in field, because their broad-
ening would be a function of twist angle inhomogeneity.
Then, assuming Gaussian disorder (a likely wrong as-
sumption), it would be straightforward to compute σθ

from the FWHM of the BZ oscillations via

σB =
4hθ√
3ea2

(Φ/Φ0)σθ.

Unfortunately, in Fig. 1, the width of the oscillations in
the oscillations is not set by twist angle inhomogeneity.
This can be readily ascertained from the fact that the
features at Φ/Φ0 = 3/5 are significantly sharper than
those at 1/2.
Near Φ/Φ0 = p/q, the Bloch electrons feel an effective
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field [53]

Beff = B − Φ0

A

p

q
.

This is an aspect of Hofstadter’s butterfly’s fractal na-
ture.

S5. Single-particle bends, SBCI, Hofstadter
ferrogmagnetism

As demonstrated in Ref. [36], not all relatively straight
lines in field/density with low resistance are Str̆eda gaps.
Instead, relatively straight-line features of low resistivity
can appear where one anisotropy-smeared butterfly spec-
trum is coincident with another. These false Str̆eda lines
have a characteristic behavior at intersections with lines
from the other doubled butterfly. Many of the features
within our measurements follow the same pattern (see
Fig. 3), and we attempt to only place lines in Fig. 1B
where we are confident that there is a gap.

We observe a few Str̆eda lines with fractional s = ±1/2
and t = ±3 near half flux (red dotted lines in panel B).
As they appear to emit from n/ns = ±2 at half flux,
we would describe them as (±2,±3)1/2. Such lines have
been described as symmetry-broken Chern insulators in
the literature [19], and we observe at least one of them
in all of the contact pairs that we measured. Curiously,
in another contact pair, a symmetry-broken Str̆eda line
(13/3,−4) = (3,−4)1/3 = (7/3,−4)1/2 runs between one
third and one half flux.

We observe states with s+ t = ±4 projecting from in-
teger s (green dashed lines in Figs. 1 and S2). In all con-
tact pairs, they tend to extend to lower field on the hole
side compared to the electron side (Fig. S2). In samples
from the literature near the magic angle, they extend to
zero or near zero field [3, 7–9, 22, 47, 56, 57]. These lines
are described theoretically as correlated Hofstadter ferro-
magnetic states in Ref. [42], meaning they have polarized
spin and valley degrees of freedom of interaction-modified
bands.

S6. Str̆eda line fit procedure

The raw data for Figs. 1, S2, and S3 are in gate-voltage
vs magnetic field. We transform the data into n/ns vs
Φ/Φ0 by placing points along sharp lines with known
(s, t) by-eye. Brown-Zak oscillations additionally con-
strain Φ/Φ0. We then use least squares to fit parameters
mg, bg, and B0, where n/ns = mgVg + bg and Φ/Φ0 = 1
at B = B0. The resulting fit parameters are shown in
Table S1 and schematically with our device geometry in
Fig.S5. Quantum capacitance, owing to its dependence
on density of states, precludes an accurate global conver-
sion between gate voltage and density. The fits should
be assumed to be at least a few percent wrong where the
density of states is low.

After fitting the global conversion parameters to lines
with known (s, t), we were able to assign (s, t) to the
remaining straight-line features. Most of the lines could
be easily assigned by-eye, and the results for all contact
pairs are shown in Fig. S2. We note that not all relatively
straight-line minima in Rxx correspond to quantum Hall
Str̆eda lines, as noted in Ref. [36]. We attempted to
correctly label only Str̆eda lines in Figs. 1 and S2.

Because of the 8/3 FCI states nearby, we expected to
find Str̆eda lines with slope 8/3 near half flux. As shown
in Fig. S9, the candidate lines are actually better fit by
s = ±1/2, t = ±3. These lines appear closely associated
with half flux, so are better described by (±2,±3)1/2.

S7. Other contact pairs

Fig. S5 shows a schematic of the device with measured
twist angles overlaid. We can make a rough estimate of
which regions in the device have inhomogeneity/different
twist angles based on the measured twist angles along
with the sharpness of features. For instance, contact
pairs 6 - 16 and 6 - 7 have both a higher measured twist
angle but also show very blurry features in transport.
Hence, we draw the blue region. Contact pairs 17 - 18 is
slightly blurry, and has a slightly higher twist angle than
its neighbors, but contact pair 8 - 18 is very blurry and
has a significantly higher twist angle, hence the orange
region. These regions are only our guesses.

Significant differences between neighboring contact
pairs has the unfortunate consequence that analyses that
rely on comparing two measurements, typically Rxy and
ρxx, are not trustworthy.

S8. Detail of Landau level reset

Figs. S10, S11, and S12 magnify the bending Landau
minifan near n/ns = 2, Φ/Φ0 = 1/2 from Figs. 1, S2,
and S3.

In Fig. S10, red dotted lines mark bending, low-
resistance states. The green dashed (1, 3) line is not vis-
ible as a minimum in ρxx. Instead, we include it to high-
light that there is a kink in the red dotted lines where it
would intersect them. This line corresponds to an integer
filling ν = 1 of the band at half flux. After the reset at
n/ns = 3 (half filling of the band, or ν = 2), we observe
Str̆eda lines (3,±6)1/2 and (3,±10)1/2.

The fourfold LL degeneracy is consistent with fully po-
larizing half of the bands at half flux. We note that above
the topmost dotted red line, the transport behavior is the
same as the spin-up regions described in the main text
and Fig. S27. We suspect, therefore, that the band at
half flux has fully spin-polarized at n/ns = 3.
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mg (V−1) bg B0 (T) A (nm2) θ (°)
13 - 14 0.843± 0.005 1.171± 0.009 41.2± 0.4 100.4± 0.9 1.309± 0.006

6 - 16 0.723± 0.003 1.023± 0.006 48.0± 0.3 86.1± 0.5 1.414± 0.004

6 - 7 0.716± 0.002 0.990± 0.005 48.2± 0.2 85.8± 0.3 1.416± 0.002

16 - 17 0.774± 0.002 1.082± 0.004 45.1± 0.1 91.7± 0.2 1.369± 0.002

7 - 17 0.772± 0.002 1.081± 0.004 45.2± 0.2 91.5± 0.3 1.372± 0.003

7 - 8 0.771± 0.002 1.093± 0.003 45.1± 0.1 91.8± 0.1 1.369± 0.001

7 - 8* 0.770± 0.001 1.085± 0.002 45.2± 0.1 91.6± 0.1 1.371± 0.001

17 - 18 0.769± 0.002 1.096± 0.004 45.6± 0.1 90.8± 0.3 1.377± 0.002

8 - 18 0.734± 0.007 1.041± 0.010 47.6± 0.7 86.8± 1.3 1.408± 0.011

TABLE S1. Voltage to density conversion parameters. *: Fit to the data in Fig. 1. The rest of the rows are fits to
the data in Fig. S2. It is important that mg and B0 agree between the two measurements of contact pair 7 - 8, and they do.
On the other hand, bg may vary over time as charge impurities and the like change. Areas and twist angles, along with their
uncertainties, are calculated assuming zero strain. We know there is uniaxial heterostrain of order 0.2% in this sample, so the
uncertainty in θ is underestimated.

S9. Vertical lines

In Fig. 3A, a dashed ellipse is drawn which encir-
cles three sets of bands: one narrow red band near -
343 meV, and two broader sets of bands between -330
and -320 meV. The narrow red band carries a Chern num-
ber of -4 and a net spin down, while the two broadened
bands each carry a Chern number of 2 and have opposite
spins. Thus, if the Fermi level is set within the gap on
the left side of the ellipse, there is no net Chern number:
−4 + 2+ 2 = 0. However, there is a net spin: the broad-
ened band’s spins cancel each other, but there is no spin
to cancel the narrow red band’s spin. This net property
will hold even if the higher-energy bands are modified by
interactions. All four gaps with this property are marked
with Xs in panels A and B.

This situation is reminiscent of a quantum spin Hall
insulator. We might expect, therefore, quantized lon-
gitudinal along with zero transverse resistance. In our
longitudinal measurements, we tend to see vertical lines
of minimal resistivity, often below our measurement floor
of roughly 1 Ohm, however in many cases the minima is
higher. Unfortunately, because of measurement noise and
differences between neighboring contact pairs, our mea-
surements are insufficient to make strong claims about
the transport properties of these states.

Fig. S13 shows zoom-in regions just below half flux
near n/ns = ±2 for the high-quality fan in Fig. 1 and the
good Hall pair from Fig. 2. At n/ns = −2, ρxx drops be-
low our measurement floor of roughly 1 Ohm (panel A),
and the Hall resistance is zero (panel C). At n/ns = 2,
there is a vertical-line transition from low to high resis-
tance rather than an isolated minimum (panel B), and
the Hall resistance is not zero (panel D). Zero longitu-
dinal and Hall resistance simultaneously would be some
exotic superconducting state, but we do not claim to have
such a state here. Rather, we expect our measurements
are a result of inhomogeneity within the device.

Many of the other longitudinal contact pairs show min-
ima in resistivity, some dropping below our measurement

floor of 1 Ohm (Fig. S2). However, from one contact pair
to the next, these minima vary by orders of magnitude.
The top row of Fig. S14 shows ρxx for all contact pairs
near the four locations with vertical lines. The cuts are
noisy and mostly unimpressive. Only contact pair 7 - 17
(the good pair with FCI) shows a clear zero resistance
plateau at n/ns = −2.

S10. How well quantized is the Hall resistance?

Fig. S15 shows histograms of Rxy = Vxy/(1 nA)/g near
the indicated ν values. Quantum Hall plateaus show up
as sharp peaks in this histogram. The free parameter g
represents inaccuracies in the gains of our amplifier and
current source, which we did not measure carefully at
MagLab. Then, we compute a metric of quantization

δ =
argmaxR −R∗

R∗ (3)

for each ν value. This metric is simple and does not con-
sider, for instance, shoulders in the histogram. We show
values of δ computed for g = 1.0785. This number places
ν = −8, our most prominent quantum Hall plateau, di-
rectly on the expected value. It is instead possible to
fine-tune g to 1.0824 so that all δ values are below 0.3%.
Either way, we are confident in stating that our fractions
are quantized to better than 1%. Note that 1.08 is a little
high compared to our experience: typically the voltage
pre-amps that we use at Stanford are only miscalibrated
by a few percent. The 1.08 number also includes a fac-
tor from our current source, which we expect to be 1
to 2 percent based on the average of our noisy current
(Fig. S6).

The simple δ metric does not consider the finite res-
olution of the voltage measurements: note that the his-
togram bins are typically spaced by a few tens of ohms.
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Assuming that it is σxy that is quantized with

σxy =
νe2

h
=

Rxy

R2
xy + ρ2xx

, (4)

it is natural to ask how high can ρxx be for Rxy to still fall
within the same histogram bin. For ν = ±8/3, the bins
are roughly 20 Ω wide, yielding |ρxx| ≲ 300 Ω. Indeed,
in many of the places that Rxy is precisely quantized to
±8/3, ρxx is of order a hundred ohms or less.

S11. Discussion of other fractions

In a similar manner to Fig. 2, in Fig. S23 we highlight
where the Hall resistance Rxy falls within a 1% window
about a specified fraction. We see that ±8/3 is sub-
stantially more robust than the other displayed fractions.
Most notably, 8/5 and −4/3 exhibit the largest regions of
quantization. Fractions not shown do not exhibit sizable
regions that fall within a 1% window.

S12. Modeling a domain wall

To model the effects of a domain wall between two
different Chern insulating regions with Chern numbers
Cl and Cr, we can use the Landauer-Büttiker formalism,

Ii =
e2

h

∑
j

(T̄jiVj − T̄ijVi), (5)

where the transmission coefficient T̄ij = MijTij is the
product of the number of modes Mij between contact j
to contact i, and the transmittance 0 ≤ Tij ≤ 1. We will
consider the case of perfect edge modes with some prob-
ability t of a carrier initially starting in one edge mode
ending in another. This will only have meaningful conse-
quence for modes at the domain wall, where the carrier
can end up in the adjacent domain. Let us first consider
the case of a domain wall which passes in-between a Hall
pair with sgn(Cl) = sgn(Cr) (Fig. S16A). Assuming the
source contact 4 is at voltage V and the drain contact 5 is
at 0, for such a configuration, the full system of equations
is



ml 0 0 0 −ml 0

−ml ml 0 0 0 0

0 −T̄12 ml −T̄32 0 0

0 0 0 mr 0 −mr

0 0 −ml 0 ml 0

0 −T̄15 0 −T̄35 0 mr


×



V

V

V2

0

V

0


=



0

0

0

0

I

−I


,

where mi = |Ci|. Then

V2 = T12V,

I = mlV (1− T12) = T̄15V.

We can then solve for the expected resistance values:

Rbot
xx =

V0 − V1

I
= 0

Rtop
xx =

V2 − V3

I
=

T12

ml

1

1− T12

Rleft
yx =

V0 − V2

I
=

1

ml

Rright
yx =

V1 − V3

I
=

1

ml

1

1− T12
.

We can similarly consider the case of a domain wall
which passes in-between a Hall pair with sgn(Cl) ̸=
sgn(Cr) (Fig. S16B). Again, assuming the source con-
tact 4 is at voltage V and the drain contact 5 is at 0, for
such a configuration, the full system of equations is



ml 0 0 0 −ml 0

−ml ml 0 0 0 0

0 −T̄12 ml 0 0 −T̄52

0 −T̄13 0 mr 0 −T̄53

0 0 −ml 0 ml 0

0 0 0 −mr 0 mr


×



V

V

V2

V3

V

0


=



0

0

0

0

I

−I


.

For this case,

V2 = T12V,

V3 = T13V,

I = mlV (1− T12).

Solving for the expected resistance values:

Rbot
xx =

V0 − V1

I
= 0

Rtop
xx =

V2 − V3

I
=

1

ml

T12 − T13

1− T12

Rleft
yx =

V0 − V2

I
=

1

ml

Rright
yx =

V1 − V3

I
=

1

ml

1− T13

1− T12
=

1

ml

T12

1− T12
.

For either case, it would be possible to achieve a mea-
sured Hall resistance of 3/8 with the appropriate values
of ml and T12. However, such a scenario would yield
markedly different values for Rbot

xx and Rtop
xx , which is in-

consistent with our data. Therefore, we think such a
domain wall in our sample is not the case.
Following this same procedure, one can see that a do-

main wall that does not pass between a Hall pair cannot
yield a fractionally quantized Hall conductance.

S13. Spin dependent transport detail

There is a curious asymmetry in the longitudinal trans-
port measurements. Observe the value of the resistivity
on either side of (0,±4) in Fig. 1. On the left side (lower
density), the resistivity tends to be in the kilohms, and
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there are numerous Str̆eda lines immediately next to the
(0,±4) line (See Sec. S13 for more detail). On the right
side (higher density), the resistivity tends to be lower
than a kiloohm, and in some cases it is below one Ohm.
In these regions, there are no Str̆eda lines, and the resis-
tivity is flat and featureless.

As an example, the line cut along the white dotted
line in Fig. 1 is shown in Fig. S27 panel A. To the left
of (0, 4), the resistivity is peaks around 4 kilohms. To
the right, between (0, 4) and (2, 0), it is only a hundred
Ohms or lower. In panel B we show that these two types
of transport correspond to states in the model that are
entirely spin-polarized. Where the states are spin-up, we
see low resistivity, and where they are spin-down we see
high resistivity. Where we see a mixture of both, the re-
sistivity is even higher. This behavior is followed in our
measurements not just near (0,±4), but also in other
regimes where the model reasonably matches the exper-
iment. The major exception to this rule is near charge
neutrality, where no substantial asymmetry is apparent.

Curiously, we only see FCI states in these low-
resistivity (spin-up) regions. Circles in Fig. 3 panels A
and B indicate regions where we observe±8/3 FCI states.
All of these regions are within blue Chern bands in panel
A.

Spin-dependent resistivity has been observed in quan-
tum Hall systems previously [58–60]. With Zeeman split-
ting, the lower-energy, spin-up states are filled first. Spin-
down electrons then see a different magnetic environ-
ment: there is a substantial background of spin-up elec-
trons already present. In high-quality WSe2, this leads to
the minority-spin resistance being dramatically increased
at low temperatures [60]. We observe the same behavior
here, however we are not confident that the underlying
explanation is the same. We may be able to reverse the
direction of resistivity with back gate voltage. We wish
to emphasize that we do not have positive evidence for
the hypothesis of spin-dependent transport.

S14. Continuum Model and Quantum metric

In this subsection, we discuss the Hamiltonian of the
continuum model in the presence of both heterostrain
and out-of-plane magnetic field. Heterostrain is de-
scribed by a 2×2 symmetric matrix Sϵ which can always
be diagonalized by an orthogonal matrix R(ϕ),

Sϵ = RT
φ

(
−ϵuni + ϵbi 0

0 νϵuni + ϵbi

)
Rφ . (6)

where Rφ =

(
cosφ − sinφ

sinφ cosφ

)
is the two-dimensional ro-

tational matrix with the angle of φ that determines the
two principal axes of the strain matrix Sϵ, and RT

φ is
the transpose of the matrix Rφ, ν = 0.16 is the Pois-
son ratio as used in Ref. [37], and ϵuni and ϵbi are the

uniaxial strain and biaxial strain respectively. In prin-
ciple, the two layers may have different strain matrices

S
(t)
ϵ and S

(b)
ϵ , where the superscript t and b refers to top

and bottom layers respectively. However, in this work,

we consider only heterostrain with Sϵ = S
(t)
ϵ − S

(b)
ϵ and

neglect the homostrain 1
2 (S

(t)
ϵ + S

(b)
ϵ ), since the shape of

moire unit cell, the narrow band structure, the associ-
ated band properties, etc. are more sensitive to heteros-
train whose impact is estimated as the maximal value of
ϵ/θ with ϵ = max(|ϵuni|, |ϵbi|) is the larger one between
the uniaxial strain and the biaxial strain. On the other
hand, the impact of homostrain is estimated as ∼ ϵ, much
smaller than the heterostrain, and therefore can be safely
neglected for small twist angles.
The impact of heterostrain on the non-interacting

Hamiltonian have been discussed in Ref. [37, 43, 44], so
we only briefly summarize the results in this manuscript.
Following the model introduced in Ref. [43, 44], we recal-
culated the lattice relaxation in the presence of the het-
erostrain by iteration method. We found that the change
of the relaxation by the applied heterostrain is the order
of ϵ/θ. To achieve the precision of 1 meV in the disper-
sion of the narrow bands and include the particle-hole
breaking terms, our continuum model contains all the
terms up to the second order in the gradient expansion,
with all the parameters numerically calculated from the
microscopic tight binding model proposed in Ref. [43, 44].
The Hamiltonian can be divided into two parts, the in-
tralayer Hamiltonian Hintra and the interlayer tunneling
Hinter. The presence of heterostrain introduced several
additional terms in Hintra. In addition to the coupling
between the pseudo-scalar field induced by lattice dis-
tortion and the fermion density, Hintra also includes the
couplings between various strain-induced fields and the
stress-energy of the Dirac fermion. Hinter includes both
the contact and gradient couplings. Since the tunneling
constants, such as w0, w1, and w2 in BM model, de-
pends on both the microscopic interlayer hopping and
the in-plane lattice distortion, and thus also depends on
the applied strain. We have numerically calculated these
coefficients with their values presented in Ref. [44, 61].
As illustrated in Ref. [37], the presence of heterostrain,

in general, breaks the three-fold rotation C3 and C2x

symmetry, but still conserves C2T . As a consequence,
the two Dirac cones around the CNP are not gapped,
but the Dirac points are shifted to other momenta in the
moiré Brillouin zone, and the two Dirac points are not
degenerate anymore, with the energy difference manipu-
lated by heterostrain and observable by quantum oscilla-
tion experiments.
Crucially, the three degenerate van Hove points be-

come non-degenerate as uniaxial heterostrain is intro-
duced. In Ref. [37], we measured the density of these
non-degenerate van Hove points for both electrons and
holes. Our model was electron/hole symmetric, so we
could not fit to all six van Hove points simultaneously.
Here, given we have now incorporated e-hole asymmetry,
we can.
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Fig. S19 shows the χ2 statistic for a wide variety of
moire parameters ϵuni, ϵbi, and ϕ. Given these three free
parameters, we choose θ such that the moire unit cell
area is fixed. In practice, fixing θ instead to 1.37° does
not make a significant change to these results.

There are two minima in ϵbi, at -0.5% and 0.3%. These
two minima correspond to the same Hamiltonian after
accounting for symmetries, with their asymmetry about
zero ϵbi coming from the Poisson ratio (which converts
uniaxial heterostrain into both uniaxial heterostrain and
a small amount of biaxial heterostrain). Thus, there is a
unique set of parameters yielding a best fit.

In Ref. [37], we estimated an uncertainty of roughly
δν = ±0.05 on each van Hove point. Here, our best-fit
result does satisfy this bound on each van Hove point.

We hesitate to place uncertainties on our best-fit pa-
rameters, because we believe that they will be dominated
by systematics. The model is not perfect, and it is not
straightforward to account for model uncertainty. The
uncertainties that we do report are based on the width
of the minima in Fig. S19, and are underestimates.

The Hamiltonian in the presence of a magnetic field
can be obtained by substituting the operator p̂ −→ p̂ +
eA(x), with the Landau gauge A = B(0, y).
For each field p/q, the computation produces a list

of energies, eigenvalues of some large Hamiltonian. The
number of energies produced is not the same from one
field to another, growing with q. We then add a Zee-
man term E = ±gµBB/2 for g = 2 and µB is the Bohr
magneton. Fig. S20A shows the resulting spectrum.

To convert the list of energies at a given field Ei into
something that we can plot versus density, we follow
Ref. [62] and write

ρ(E) =
∑
i

1

π

γ

(E − Ei)2 + γ2
,

n(E) =
∑
i

1

π
arctan

(
E − Ei

γ

)
.

To normalize, divide each equation by the number of en-
ergies. The smoothing parameter γ is not based on any
temperature or disorder model. Fig. S20B is then 1/ρ(E)
plotted against n(E) and field. It is refreshing to see that
even with such a simple model, much of the behavior from
both Ref. [36] and the present manuscript are captured.

At the end of this subsection, we briefly review the
definition of Berry connection and quantum metric for
the Bloch states. As usual, the overlap of two Bloch
states are

⟨u(k)|u(k + δk)⟩ = 1 + δkµ⟨u(k)|∂µu(k)⟩

+
1

2
δkµδkν⟨u(k)|∂µ∂νu(k)⟩+O(δk3) (7)

where u(k) is the perodic part of the corresponding Bloch
state, i.e. u(k) = e−ik·rϕ(k), where ϕ(k) is the Bloch

state with the crystal momentum of k. Here, the overlap
⟨u(k+δk)|u(k)⟩ is expanded to the quadratic order of δk.
It is obvious that the linear part of δkµ is proportional
to the Berry connection, defined as

Aµ = i⟨u(k)|∂µu(k)⟩

and can be shown to be real. Additionally,

⟨u(k)|∂µ∂νu(k)⟩ = −i
(
∂µAν + ∂νAµ

)
+ ⟨∂µ∂νu(k)|u(k)⟩ .

(8)

Therefore, the imaginary part of ⟨u(k)|∂µ∂νu(k)⟩ is

−1

2

(
∂µAν + ∂νAµ

)
(9)

However, it does not appear in the quadratic terms of
the expansion since it is an anti-symmetric tensor. We
introduce the symmetric tensor γµν for the real part

γµν = −Re(⟨u(k)|∂µ∂νu(k)⟩) (10)

Thus, Eq. 7 can be rewritten as

⟨u(k)|u(k + δk)⟩ = 1− iAµδkµ

− 1

2
δkµδkν

(
γµν +

i

2

(
∂µAν + ∂νAµ

))
+O(δk3) (11)

However, the γ tensor is U(1) gauge dependent. To ob-
tain a gauge-independent tensor, consider

|⟨u(k)|u(k + δk)⟩|2

= 1− δkµδkν (γµν −AµAν) +O(δk3) (12)

and thus, the quantum metric tensor is defined as

gµν(k) = γµν(k)−AµAν (13)

=⇒1− |⟨u(k)|u(k + δk)⟩|2 = δkµδkνgµν(k) +O(δk3)
(14)

In the presence of magnetic fields, the magnetic Bloch
states might be written as the linear combination of Lan-
dau wave function instead of plane waves. In this case,
the overlap between u(k) and u(k + δk) is calculated as

⟨u(k)|u(k + δk)⟩

=
1

Suc

∫
muc

d2r ϕ∗
k(r)e

−iδk·rϕk+δk(r) (15)

where
∫
muc

d2r integrates only over one magnetic unit
cell, and ϕk is the magnetic Bloch state with the magnetic
momentum of k. All these formula will be discussed in
detail in Ref.[61].
We show the Berry curvature and the trace of the quan-

tum metric tensor for the bands featuring ±8/3 FCIs at
2/5 flux in Fig. S25. We note that the “trace condi-
tion” [63] is violated strongly in the case of one of these
bands (panel B).
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FIG. S1. Longitudinal fan with schematic. (A) Same data as in Fig. 1. (B) Black lines are ordinary integer quantum
Hall. Blue vertical lines are potential QSH sites (Sec. S9). Green dashed lines are correlated Hofstadter ferromagnetic states
(Sec. S5). Red dotted lines are symmetry-broken Chern insulating states (Sec. S5). Red dashed lines are the bending Landau
levels discussed in Sec. IV. Gray dashed lines are Brown-Zak oscillations.
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FIG. S2. All longitudinal contact pairs. Measured separately from Fig. 1, which was a remeasurement of contact pair 7-8.
(Left panels) The longitudinal resistivity of the indicated contact pairs. (Right panels) Corresponding schematic with the
same interpretation as in Fig. S1B. The red circle for contact pair 13 - 14 indicates a feature that we could not unambiguously
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FIG. S5. Twist angle variation. Blue-labelled points are our contacts. The pitch between contacts is 3 µm. The channel is
1 µm wide. Vertical lines between them are Hall pairs, and horizontal lines are longitudinal pairs. The estimated θ values for
each contact pair (Table S1) are laid over the lines, with uncertainties elided for brevity. Shaded regions indicate our guess of
regions with different twist angles, based on nearby twist angles and the sharpness of features in the measurements.
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plateaus at integers ±8 (not shown), ±4, -2, -8/3, -8/5, and -4/3, the latter two only near n/ns = 3. (D) Histogram of all Hall
conductances. Interestingly, there are more -8/3 measurements than any integer.



22

4 3 2 1 0 1 2 3 4
n/ns

1/3

2/5

1/2

3/5

/
0

-4
-8
8
4

FIG. S8. Integer quantum Hall plateaus. ±200 Ω windows for several different integer plateaus for contact pair 7 - 17.
Dotted lines are (0, pm 4). Though the integer states are reasonably well quantized, they subtend far less of the Landau fan
at these fluxes than 8/3.
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FIG. S9. Fractional or symmetry-broken Str̆eda lines near half flux? Panels A-D are the same data as in Fig. S2.
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FIG. S12. Detail of LL reset, continued. All three Hall contact pairs show a change of sign near half flux (ACE). There
appear to be features associated with the Str̆eda lines (1, 3), (2, 2), and (3, 1), however the Hall conductivity never has the
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FIG. S16. Hall bar with a domain wall. Schematic diagram of a Hall bar with a domain wall between two Chern insulating
regions with different Chern number Cl and Cr for the case of when (A) sgn(Cl) = sgn(Cr) and (B) sgn(Cl) ̸= sgn(Cr).
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FIG. S18. Spin-dependent transport detail. Zoomed in from Fig. 1. On the left side of (0,−4) (A) and (0, 4) (B), the
resistance is higher than on the right side and there are Str̆eda lines (black lines). Dotted white lines approximate where we
start to have two spin species. See Fig. S17.
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FIG. S20. Hofstadter’s butterfly of the strained BM model. (A) Computed spectrum for θ = 1.38◦, uniaxial heterostrain
ϵ = 0.2% at 0°angle, and g = 2. Red means spin down, blue means spin up. (B) Computed inverse density of states.
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FIG. S22. Clustering mask for ±8/3. Here we color code clusters by the number of points included in the cluster. Nearest
neighbors and next-nearest neighbors that both fall within the defined window will be included in a cluster.
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FIG. S23. Highlighting values of Fractional Hall resistance In a similar manner to Fig. 2A of the main text, the
longitudinal resistance is shown in grey-scale. We then highlight regions where the Hall resistance falls within 1% of the
specified fractional value: A ±8/3 (reproduced from main text), B ±8/5, C ±8/7, D 4/3, E 5/3, and F 7/3. Our clustering
algorithm has been applied to remove spurious points (see Sec. S3).
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FIG. S24. Possible reentrant FCI. (A) Zoomed in colorplot of the Hall resistance in on the largest plateau of -8/3 quanti-
zation. Colorbar is centered about 3h/8e2, such that white regions are well quantized. (B) Waterfall plot of (A) with curves
offset for clarity. There is a loss of quantization roughly around -1 n/ns with quantization recovered on either side.
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FIG. S25. Computed Hofstadter spectrum and quantum geometric tensor. (A) Computed energy levels for θ = 1.35◦

with 0.24% uniaxial heterostrain at 45° and 0.3% biaxial heterostrain (q ≤ 72), as described in the text. Spin up electrons are
shown in blue, and spin down electrons are shown in red. The gaps at (s, t) = (0,−4) and (4,−4) are labeled. See Fig. S20 for
the full range of fields. (B-D) Berry curvature (top panels) and trace condition (bottom panels) for the three labeled bands at
2/5 flux in panel A in the first moiré Brillouin zone. The black dashed lines correspond to the magnetic BZ. These three bands
host the −8/3, +8/3, and −8/3 FCI states within the line cuts in Fig. 2, respectively. The trace and Berry curvatures are
dimensionless, having been scaled by the area of the magnetic BZ. The units are not scaled to a unit cell area of

√
3π2/2 ≈ 8.5
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FIG. S26. Computed band structure at 1/2 flux. Computed energy levels for the four bands at half flux. The middlemost
bands have regions of open orbits.
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FIG. S27. Possible spin-dependent transport. (A) Line
cut from Fig. 1 along the dotted white line at 19.2 T. Inter-
sections with the (0, 4), (2, 0), and (4,−4) Hofstadter gaps are
indicated with vertical dotted lines. (B) Density of states at
p/q = 19/45 (B ≈ 19.1 T). Spin up and down states are indi-
cated in blue and orange respectively, as well as with arrows
in both panels.
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