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Scanning probe techniques are popular, non-destructive ways to visualize the real space structure
of Van der Waals moirés. The high lateral spatial resolution provided by these techniques enables
extracting the moiré lattice vectors from a scanning probe image. We have found that the extracted
values, while precise, are not necessarily accurate. Scan-to-scan variations in the behavior of the
piezos which drive the scanning probe, and thermally-driven slow relative drift between probe and
sample, produce systematic errors in the extraction of lattice vectors. In this Letter, we identify
the errors and provide a protocol to correct for them. Applying this protocol to an ensemble of ten
successive scans of near-magic-angle twisted bilayer graphene, we are able to reduce our errors in
extracting lattice vectors to less than 1%. This translates to extracting twist angles with a statistical
uncertainty less than 0.001° and uniaxial heterostrain with uncertainty on the order of 0.002%.

The electronic properties of Van der Waals (VdW)
moiré heterostructures depend sensitively on the rel-
ative twist between layers of the stack. In experi-
mental samples, the final twist angle is often different
than intended and/or spatially nonuniform. Testing ap-
proaches to improve this situation will require a rapid
way to assess structure during or after stacking. Sev-
eral scanning probe techniques implemented on commer-
cial atomic force microscope (AFM) platforms [1–6] can
image nanometer-scale moiré superlattices in real space.
To extract quantitative structural information from such
scanning probe imaging, distortions in the raw spatial
maps due to scanning probe hardware and thermal drift
[7–9] must be accounted for and removed.

In this Letter, we describe how to extract quantita-
tive information about local moiré superlattice structure
from scanning probe images. We use images of twisted
bilayer graphene (TBG) acquired through torsional force
microscopy (TFM), but the method we present should
work for any moiré superlattice imaged by any scanning
probe technique. We first show the importance of using a
coordinate system which reflects the actual rather than
intended motion of the scanning probe when scanning
with position feedback disabled. We then present a pro-
tocol to correct image distortions caused by the slow rel-
ative drift between sample and probe due to thermal ex-
pansion. Layers in moiré heterostructures generally have
some heterostrain, i.e. each layer is strained relative to its

neighbor. Scanning tunneling microscopy measurements
have shown this heterostrain to have typical magnitude
of a few tenths of a percent [10–13]. Heterostrain on
this scale can dramatically influence the electronic prop-
erties of moiré superlattices [14–16]. If we assume that
heterostrain is purely uniaxial, our analysis of images al-
lows us to extract both the TBG twist angle and the
uniaxial heterostrain with their respective uncertainties.
Additional information could allow distinguishing biaxial
heterostrain from a shift in twist angle.

We target twist angle uncertainty of 0.01° and heteros-
train uncertainty of 0.1%, motivated by present limits on
how well twist angle can be determined from transport
measurements, how uniform the “best” samples appear
to be over micron-scale lengths [17–20], and how small a
change in these parameters influences electronic proper-
ties seen in transport.

The relative twist angle between layers can be ex-
tracted from the moiré lattice vectors [11, 21, 22]. In
previous work we have shown that the lattice vectors can
be precisely measured from TFM images given the tech-
nique’s high contrast and lateral spatial resolution [1].
Since then we have found that the lattice vectors ex-
tracted from successive scans of the same area are gener-
ally different, indicating the accuracy of these measure-
ments does not match their precision. We have revisited
our analysis to understand and overcome such scan-to-
scan discrepancies.
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FIG. 1. Scan area correction and measurement of moiré wavelength. (a) TFM phase image of TBG. The frame
outline represents the intended scan area (70 nm x 70 nm). The black dashed lines show the smaller and non-square (54.7 nm
x 56.8 nm) extent of the actual scan area recorded by X/Y sensors which track the motion of piezos that drive the scanning
probe. Further analysis steps are based on these sensor-corrected coordinates. (b) Two-dimensional autocorrelation (AC) map
using the sensor-corrected coordinates. The red symbols mark the average moiré lattice vectors. (c) The moiré wavelength and
corresponding naive twist angle of the AC peaks using the intended (orange) or sensor-corrected (red) coordinates. Points are
labeled by their polar angle with respect to the X-axis. The errors in the wavelength are set by the pixel size in the maps.

In analyzing scanning probe data, the pixels in the
image are typically assumed to fall on an evenly-spaced
square grid (the “intended grid”). This condition is of-
ten roughly enforced by closed-loop feedback on X and
Y position during scanning [23]. We instead choose to
scan in open loop, which allows us to scan at faster line
rates (up to 8-24 Hz) and in turn acquire more extensive
statistics and survey more regions of our samples. With-
out feedback, the actual tip position during piezo-driven
scanning differs from the corresponding position on the
intended grid. This deviation can differ from scan to
scan, contributing to our observed discrepancy in extract-
ing lattice vectors [7, 23]. To accurately assign real-space
locations to the pixels in an image, we record the same
X/Y position sensor data that would commonly be used
for closed-loop control, then use it in post-processing to
construct an X/Y coordinate grid.

After correcting with X/Y position sensors, moiré lat-
tice vectors extracted from successive scans of alternat-
ing slow scan direction show systematic errors. Lattice
vectors extracted from scans with the same slow scan di-
rection are internally consistent, but comparison of the
vectors between the two slow scan directions show differ-
ences up to a few percent. This systematic pattern is con-
sistent with slow, constant-velocity relative drift between
sample and probe, which should produce a Doppler-like
shift in the extracted periodicity of the moiré when scan-
ning along or against the drift direction [7–9]. To correct
for relative drift, we analyze multiple scans of the same
region to extract the drift velocity. We then apply a
drift-velocity-dependent transformation to the extracted
lattice vectors to undo the distortion produced by that
drift. We further validate this analysis by applying it
to (1) scans with different line-scan rates and (2) scans

with slow scan along an axis perpendicular to that for
the original batch. If these scans are taken in close suc-
cession, all yield a single consensus set of lattice vectors
upon correcting for a single vector drift velocity that does
not change between scans.

A TFM image of TBG that has been corrected with
X/Y position sensors is shown in Figure 1a. The scan was
intended to be a 70 nm square frame, but the measured
scan dimensions are about 20% smaller than intended
and rectangular rather than square. The effect of this
correction on the extracted twist angle can be seen in
Figure 1b-c which shows our extraction and analysis of
moiré lattice vectors. To extract the lattice vectors, we
employ a real-space analysis using autocorrelations (AC)
(see supplementary material). Figure 1b shows a two-
dimensional AC of the image using the sensor-corrected
coordinates. The red markers denote peaks in the AC
which represent the average moiré lattice vectors. From
these vectors we calculate the moiré wavelength – the
length of the vector – and convert the wavelength to a
“naive” twist angle, for now neglecting strain and treat-
ing each vector as independent from the others. The
moiré wavelengths and twist angles are shown in Fig-
ure 1c for the uncorrected (orange markers) and sensor-
corrected (red markers) images. The scan area correction
results in an approximate 0.2° change in extracted twist
angle.

The uncertainty due to relative drift between sample
and probe can be seen by keeping track of the slow scan
direction. We refer to scans which have a slow scan direc-
tion of positive slow axis as Forward (F) and slow scan
direction of negative slow axis as Backward (B). Shown in
Figure 2 are two back-to-back sets of 10 successive (F, B,
F, ...) scans. Each scan is acquired at a line-scan rate of
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FIG. 2. Correction of distortion from relative sample-probe drift. a)-c) Wavelengths for different moiré lattice
vectors over ten successive scans of alternating scan direction, after X/Y sensor data corrections, with the slow axis being
the Y direction. Refer to Figure 1 for the corresponding lattice vector of the marker symbol. Points on vertical gray lines
represent scans with slow scan direction of positive slow axis; scans with a scan direction of negative slow axis are interleaved
between. Before drift correction (red markers), the wavelengths of lattice vectors marked by triangles in Fig 1 systematically
differ between forward and backward scans (panel b). After drift correction (blue markers), this asymmetry is reduced. Error
bars include the error from finite pixel size in our original image. For drift-corrected data, uncertainty in drift velocity is also
incorporated through Monte Carlo simulation (see supplementary material). The error bars for the red points are omitted for
visibility, but are similar to those for sensor-corrected data in Figure 1. d)-f) Same as above except the slow axis being the
X direction. The data were taken immediately after a)-c). Prior to drift correction, the square points (panel f) rather than
triangles now display Forward/Backward asymmetry. For each slow scan direction, the drift-corrected wavelength for each
lattice vector from each of ten scans falls within the horizontal dashed red lines, which denote a +/-1% error around the central
value of this wavelength. See supplementary material for significance of +/-1% error.

8 Hz with 512x512 pixels. The moiré wavelengths of the
three unique moiré lattice vectors are plotted as a func-
tion of the scan direction. With only sensor correction
(red markers), we see an asymmetry between Forward
and Backward scans in Figure 2b, f. In general, whether
a lattice vector shows asymmetry or not depends on the
polar angle of the lattice vector, direction of drift, and
scan slow axis. This is why the triangle markers show
asymmetry in Figure 2b but not in Figure 2e, and vice
versa for the square markers.

Constant-velocity relative drift linearly transforms the
true lattice vectors into the distorted lattice vectors we

extract. Correcting for drift distortion requires us to ap-
ply the inverse transformation on our extracted vectors.
See supplementary material for derivation of this trans-
formation, as well as details on how we extract the rel-
ative drift velocity. Table I shows our estimated drift
velocities for the two sets of measurements shown in Fig-
ure 2, as well as a third set taken immediately after the
second with a different line scan rate. The estimated
drift velocities are on the order of hundreds of pm/min
and are consistent across the three sets which in total
took roughly 30 minutes to acquire. The consistency of
the velocities suggests that we may treat established drift
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Slow axis Line scan rate (Hz) Drift along X (nm/min) Drift along Y (nm/min)
Set 1 Y 8 0.532 +/- 0.055 -0.270 +/- 0.050
Set 2 X 8 0.480 +/- 0.053 -0.140 +/- 0.054
Set 3 X 4 0.498 +/- 0.034 -0.034 +/- 0.036

TABLE I. Estimated drift velocities across three successive sets of measurements with different slow axes. Sets 1 and 2 (shown
in Figure 2) contain 10 successive scans and are acquired with a line scan rate of 8 Hz. Set 3 contains six scans and is acquired
with a line scan rate of 4 Hz. Each set of measurements takes roughly 10 minutes. Each scan contains 512x512 pixels.

values as constant when correcting future scans close in
time. However, drift calibrations should be performed
periodically to verify trends in the drift and to get the
most accurate estimation.

The results of drift correction on our extracted lat-
tice vectors are shown in blue in Figure 2. The For-
ward/Backward asymmetry is slightly reduced in Figure
2b and nearly eliminated in Figure 2f. After drift cor-
rection, the average wavelengths of corresponding peaks
nearly match between data sets with orthogonal slow
axes but have a small deviation by 60 to 200 pm, com-
parable to the 100 pm pixel size. After drift correction,
we extract the TBG twist angle, uniaxial heterostrain
magnitude and strain angle by treating the lattice vec-
tors collectively rather than individually and using vector
displacements rather than wavelength. These parameters
are extracted by applying rotation and uniaxial strain
transformations on ideal graphene layers to calculate the
expected moiré lattice vectors [11]. An optimization of
these transformations is performed until the expected
vectors agree with our measured vectors (see supplemen-
tary material).

The optimized TBG twist angle, uniaxial heterostrain
and strain angle are shown in Figure 3. After drift correc-
tion, we found that the average twist angle of our images
is 1.126°, close to the TBG magic-angle. Both the statis-
tical uncertainty within each data set and the difference
between the two sets with perpendicular slow axis direc-
tions are on the order of a thousandth of a degree. This
region of our sample has an average uniaxial heteros-
train magnitude of less than a hundredth of a percent;
for such weak heterostrain, we cannot confidently extract
the angle along which the strain is applied. The lack of
heterostrain may be a result of our scanning in a region
which lacks bubbles and wrinkles. See supplementary
material for a discussion of strain angle and a larger-area
scan showing the landscape of bubbles and wrinkles in
our sample.

In post-processing, we are able to correct scanning
probe images to accurately extract moiré lattice vectors
with less than 1% error. This enables us to extract twist
angles near TBG magic-angle with uncertainty on the
order of a thousandth of a degree. Were we to ana-
lyze images of TBG with a different twist angle, our
uncertainty could be interpreted as a maximum (mini-
mum) uncertainty for twist angles smaller (larger) than
TBG magic-angle. Figure S5 (supplementary material)

shows the naive twist angle of TBG as a function of the
moiré wavelength. The error bounds on twist angle cor-
respond to a scenario where there is a flat percentage er-
ror in measuring wavelength. In general, the uncertainty
in twist angle increases as the extracted wavelength be-
comes smaller.

In this work we analyze images tens of nanometers in
size, spanning a few moiré periods across each image.
For comparison, electrical transport measurements probe
the properties between contact pairs which are typically
spaced a micron apart. Depending on the twist angle
between VdW layers, a few to hundreds of moiré peri-
ods can be contained between the contacts. Quantitative
analysis of scanning probe images spanning larger regions
[3, 5] – one to a few microns across – could provide use-
ful structural information to complement electrical trans-
port measurements. For example, uniaxial heterostrain
was recently shown to be responsible for dramatic and
novel electrical properties of a TBG sample [24]. In that
study, heterostrain was not intentionally introduced, and
no direct measure of heterostrain was available. Instead
the presence and magnitude of uniaxial heterostrain was
inferred based on an excellent match of theoretical cal-
culations to transport data [25]. The analysis protocol
described here is usable on larger length scales, provided
the moiré can be resolved and the relative drift velocity
can be estimated. Applying this protocol to larger-area
scanning probe images of open-face stacks prior to encap-
sulation would provide a direct measure of heterostrain
in a moiré and could even be used to select a particular
region of a moiré on which to form an electrical device.

Application of the analysis can also be extended to
multi-layer moiré heterostructures, provided multiple
moirés can be imaged in a single sample [1, 4, 26]. For
example, images of TBG with aligned hBN can be used
to identify the relative twist angles between graphene
and hBN layers, to screen for samples which may host
the quantum anomalous Hall effect [27–29]. Finally, this
analysis protocol could also provide rapid feedback for de-
veloping stacking processes for improved structural con-
trol and uniformity of moirés, especially in the context
of robotic stacking in vacuum [30, 31].

In conclusion, we have described a protocol to accu-
rately extract moiré lattice vectors from scanning probe
images. This protocol is tested by analyzing successive
scans of nearly the same area of near-magic-angle twisted
bilayer graphene. Systematic errors are first corrected
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FIG. 3. Extraction of TBG twist angle and uniaxial heterostrain. Results of optimization for (a) slow axis Y and
(b) slow axis X, with sensor corrections (red) and drift and sensor corrections (blue). The dashed blue line is the mean value
of the parameter after drift correction. The reported error of the mean is statistical uncertainty. The error bars on points are
obtained by repeating the optimization using Monte Carlo simulation from a distribution around our extracted moiré lattice
vectors, then fitting a Gaussian to the resulting distribution of parameters. The values of the parameters extracted from scans
with the two different slow axes are consistent after drift correction.

by using position sensors to define an accurate coordi-
nate grid, and then by determining and accounting for
a slow relative drift between sample and probe. Finally,
we extract twist angle and uniaxial heterostrain using
the the full set of moiré lattice vectors. The statistical
uncertainty in twist angle extracted from an ensemble
of ten scans is less than 0.001°, and the uncertainty in
strain is 0.002%. Comparing between scans performed
with slow axis in two perpendicular directions, these val-
ues are consistent, except that the extracted strain differs
by ∼ 0.01%, reflecting a small systematic error we have
not yet identified.

Sample preparation & AFM measurements

Our sample was prepared in air using polymer stamps
from [30]. The sample was imaged using the TFM proto-

col in [1] where extensive details regarding the technique
and the measurements performed have been provided.
All AFM measurements shown as part of this work

were performed at Stanford university in a shared facility
Bruker Dimension Icon AFM equipped with NanoScope
V electronics and software version 9.40 (Windows 7) and
(after an update) version 9.70 (Windows 10, 64-bit). A
Standard Operating Procedure (SOP) for Torsional Force
Microscopy is available at [1], to aid in the reproduction
of these results and a procedure for analysis of AFM re-
sults is provided in the supplementary material.

Supplementary material

See the supplementary material for details on pre-
processing of X/Y position sensors + TFM images, a
large-area survey scan of the sample, derivation of the
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drift transformation matrix, estimation of relative drift
velocities, extraction of relative twist angles and heteros-
train, propagation of uncertainties and additional data
for Set 3 of Table I.
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Supplementary Material for

Quantitative determination of twist angle and strain
in Van der Waals moiré superlattices

(Dated: 12 June 2024)

Pre-processing of scanning probe data

(Torsional resonance channels)

Information about the real space structure of the moiré superlattice are captured in the torsional resonance (TR)
amplitude and phase channels of torsional force microscopy (TFM). If the raw data has high signal-to-noise with little
background, we prefer to work directly with the raw data that has an average value plane subtracted from it. Figure
1a of the main text is an example of the raw data with an average plane subtracted from it. If background subtraction
is necessary for autocorrelation or fast Fourier transform analyses, we perform a fit of a 2D polynomial background
(up to third degree polynomial in X and Y) to remove it. We avoid working with a line-by-line background subtraction
(fitting each line to a polynomial) because information about the moiré will be lost if any of its features align with a
scan line.

a) b)

FIG. S1. Torsional resonance amplitude and phase. Example TR amplitude (a) and phase (b) channels from TFM.
The raw data with a plane of the average value subtracted are shown.
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(X/Y position sensors)

The raw data from position sensors have noise on the order of hundreds of picometers which lead to unrealistic
real space placements of pixels when constructing an X/Y coordinate grid using the raw data directly (see Figure
S2a). Furthermore, the pixels on the raw grid are not necessarily equally spaced, causing issues for autocorrelation or
fast Fourier transform analyses which expect equally spaced pixels. To remove the noise and obtain equally spaced
pixels, we make the assumption that the motion of the scanning probe is accurately described by a linear fit of X
and Y sensor data. We independently fit the X and Y sensors to a 2D first degree polynomial and construct an X/Y
coordinate grid from the fitted sensor data.

a) b)

c) d)

FIG. S2. Raw X and Y position sensors with the residuals of 2D polynomial fit. (a) X position sensor and (c) Y
position sensor for a line of the scan (with fast axis Y and slow axis X). The black curve is the raw sensor data which shows
hundreds of picometers of noise. The red curve is the linear fit to the sensor data. (b) and (d) show the residuals of the 2D
polynomial fit to the sensor data.
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FIG. S3. Large area scan showing sample bubbles and wrinkles. Sensor-corrected large-area survey scan. The intended
scan size was 12 um x 12 um. The blue square corresponds to the approximate region the data in the main text were taken
at. Our scan region is not fully enclosed by wrinkles, nor is it close to bubbles. This may explain the lack of heterostrain in
our analysis. The straight vertical line to the left of the blue square is a real wrinkle in the sample, the curvy line to the right
corresponds to a dust particle that is being dragged around by the probe throughout the scan.
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Analysis of images: autocorrelations and fast Fourier transforms

We use two-dimensional autocorrelations (AC) as our primary tool for analyzing our TFM images and extracting
the average moiré lattice vectors. The AC displaces an image with respect to itself, takes the product of overlapping
pixels and then sums over all the products. When “identical” features overlap, there is a peak in the AC spectrum.
For images of moirés, the peaks closest to zero displacement correspond to when neighboring moiré unit cells overlap,
which are the moiré lattice vectors by definition. When the AC is performed with images that contain more than
three unit cells, the peaks represent the average moiré lattice vectors because we are simultaneously determining the
lattice vectors from every unit cell present in the image. To get the “local” lattice vectors at a given point in the
image, the data should be cropped around the point to include only neighboring unit cells. A fast Fourier transform
(FFT) analysis can also be employed. We prefer AC for our analysis because our images have high contrast which
allows us to work in real space directly. Furthermore, the FFT method can run into issues when there only a few
periods in the image, whereas the AC does not. In Figure S3 we compare the extracted moiré wavelengths from the
AC versus FFT, which agree quite well (within a few hundred picometers.) To get the FFT, a Hanning window and
zero-padding were applied to the input image to get reduce FFT artifacts and to increase the resolution of the FFT.

a)

c)

b)

d)

FIG. S4. Comparison of autocorrelation and fast Fourier transform analysis. (a) A two-dimensional autocorrelation
map for the image shown in Figure S1. Black crosses denote the average moiré lattice vectors. (b) The wavelength (length
of the vector) for the various lattice vectors, labeled by their polar angle with respect to the X-axis. (c) A two-dimensional
FFT for the same input image as (a). Shown is the power spectral density (square of the FFT magnitude). The blue crosses

correspond to the reciprocal moiré lattice vectors K⃗i. (d) The corresponding real space wavelength of the reciprocal vector

(approximated by 2/
√
3/|K⃗i|). Both the AC and FFT were normalized by the maximum value of the spectrum.
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FIG. S5. Propagation of moiré wavelength uncertainty to twist angle. (a) Twist angle of TBG as a function of
the moiré wavelength. The shaded regions represent the bound on twist angle error resulting from a 20% relative error in
measuring wavelength. Dashed blue lines are a guide to the eye showing an approximate uncertainty of ±0.2◦ in determining
TBG magic-angle (1.1◦) with a 20% relative error. (b) Scaling of the twist angle error near magic angle as a function of
relative error in wavelength. The dashed horizontal red lines show an uncertainty of ±0.01◦. The vertical black line denotes
the maximum wavelength error (1%) consistent with this.

Propagation of moiré wavelength error to naive twist angle

Shown in Figure S5 (left panel) is the naive twist angle for TBG as a function of moiré wavelength when there is
fixed 20% error in measuring the wavelength (see the main text for definition of naive twist angle). Generally, the
uncertainty in twist angle increases as the measured moiré wavelength decreases. If we focus on twist angles around
the TBG magic angle (1.1◦), a 20% fixed error leads to an uncertainty on the order of +/- 0.2°. If the goal is to
determine the magic angle to within a hundredth of a degree, an error in the measurement of the moire wavelength
less than 1% is required (right panel of Figure S5(b)).
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Derivation of the linear transformation due relative drift between probe and sample

Before we proceed with the derivation, we will need to make assumptions about the dynamics of the scanning
probe to model our experiment. We will assume a fast scan axis of Y, a slow scan axis of X, and a scan area with
dimensions (Lx×Ly) that is centered around the sample origin O = (0, 0). The derivation swapping the scan axes will
be identical. Next, we need to estimate the fast and slow probe velocities. In an actual experiment, these velocities
are dependent on the scan dimensions and two software inputs: the line scan rate (f) and number of lines (N) in

an image. We choose the fast probe velocity to be V⃗fast = (0, Vfast) (Vfast = 2Lyf) and the slow probe velocity

to be V⃗slow = (Vslow, 0) (Vslow = Lxf/N). These velocity vectors point from the starting point of a scan, which we
discuss in the next paragraph. Because our fast and slow probe velocities are chosen to align perfectly along the fast
and slow axes, the scan area will be rectangular by construction. This choice makes our calculations simpler, but the
scan area in an actual experiment may be a parallelogram because probe velocities are typically not perfectly aligned
with the scan axes. We find the rectangular scan area to be a good approximation even if the scan area is slightly
parallelogram. For further simplication, assume a square scan area (Lx = Ly = L). The last ingredient we need is a
distinction between Forward (F) and Backward (B) scan directions. In an actual measurement, the difference between
Forward and Backward scans is the starting point of the scan, and the sign of the slow probe velocity. For a Forward
scan, we have slow probe velocity +V⃗S with a starting point of OF = (−L/2,−L/2). For a Backward scan, we have

slow probe velocity -V⃗S with starting point of OB = (L/2,−L/2). For the derivation swapping the fast and slow axes,
we would keep OF the same but OB = (−L/2, L/2). To keep track of the sign of the slow velocity with respect to

scan direction, we redefine V⃗S = (CA · VS , 0) (VS = Lxf/N) where CA = 1 if A = F, and CA = −1 if A = B.
Moving on to the derivation, let us assume there is a feature of interest on our sample at coordinates R = (Rx, Ry).

We define our true lattice vector R⃗ as the vector which points from O to the feature (R⃗ = R−O = (Rx, Ry)). The next

vector we define is T⃗A(t), which is a vector which points from the scan starting point OA to the position of the probe as a
function of time in the scan. The position of the probe is given by the fast and slow probe velocities, and two times: the
“slow” time tslow = n/f where n is the number of lines that have been scanned, and the “fast” time tfast which is the
time spent on the current line. tslow will determine the vector displacement along the slow axis, and tfast will determine

the vector displacement along the fast axis. We can then write T⃗A(t = tslow+ tfast) = OA+ V⃗slow · tslow+ V⃗fast · tfast.
The vector T⃗A can be used to calculate the time the scanning probe would arrive at O or R, which we call tO and tR,
respectively. This calculation can be done by solving,

T⃗A(tO = tO,slow + tO,fast) = O

V⃗slow · tO,slow + V⃗fast · tO,fast +OA = O

(CAVslow · tO,slow, 0) + (0, Vfast · tO,fast) = O −OA.

(S1)

T⃗A(tR = tR,slow + tR,fast) = R

V⃗slow · tR,slow + V⃗fast · tR,fast +OA = R

(CAVslow · tR,slow, 0) + (0, Vfast · tR,fast) = R−OA.

(S2)

To derive the linear transformation due to relative drift, we need to calculate how R⃗ is perceived by the scanning
probe in the presence of relative drift between probe and sample. To introduce drift dynamics we assume all the
relative drift is on the sample side with drift velocity D⃗ = (Dx, Dy). This means the coordinates of O and R are

changing over time according to O∗(t) = O + D⃗t and R∗(t) = R + D⃗t, where t is the elapsed time since the start of

the scan. The transformed R⃗ is given by R⃗∗ = R∗(tR) − O∗(tO). With the introduction of relative drift, Equations
(S1) and (S2) become

(CAVslow · tO,slow, 0) + (0, Vfast · tO,fast) = O + D⃗ · (tO,slow + tO,fast)−OA, (S3)

(CAVslow · tR,slow, 0) + (0, Vfast · tR,fast) = R+ D⃗ · (tR,slow + tR,fast)−OA, (S4)

We will make the following approximation to make the algebra simpler by decoupling tslow and tfast in one equation,

D⃗ · (tslow + tfast) = (Dx · (tslow + tfast), Dy · (tslow + tfast)) ≈ (Dx · tslow, Dy · (tslow + tfast)). Physically, tslow
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corresponds to the time when the probe catches up to the feature along the slow axis and is along the same line. At
this time, the feature would have drifted along the slow axis by Dx · tslow (recall X is our slow axis). Once the probe
arrives at the same line, it catches up to the feature along the fast axis in some time tfast. The original expression
before the approximation Dx · (tslow + tfast) takes into the account the extra drift along the slow axis in the time
tfast. Since tfast is counted from the start of the current line, we assume it to be negligible when compared to tslow,
so we ignore the extra contribution. We will proceed with the derivation assuming the Forward scan direction (A =
F). Solving Equation S3 first,

(CFVslow · tO,slow, 0) + (0, Vfast · tO,fast) = O + D⃗ · (tO,slow + tO,fast)−OF ,

(Vslow · tO,slow, 0) + (0, Vfast · tO,fast) = (Dx · tO,slow + L/2, Dy · (tO,slow + tO,fast) + L/2).

By comparing components we get two equations

Vslow · tO,slow = Dx · tO,slow + L/2 ⇒ tO,slow =
1

Vslow −Dx

L

2
.

Vfast · tO,fast = Dy · (tO,slow + tO,fast) + L/2 ⇒ tO,fast =
1

Vfast −Dy

[
Dy

Vslow −Dx
+ 1

]
L

2
.

Doing the same algebra for Equation S4,

tR,slow =

(
Rx +

L

2

)
1

Vslow −Dx
.

tR,fast =
1

Vfast −Dy

[
Ry +

Dy

Vslow −Dx
Rx

]
+

1

Vfast −Dy

[
Dy

Vslow −Dx
+ 1

]
L

2
.

We can now solve for the transformed R⃗∗ = R∗(tR,slow + tR,fast)−O∗(tO,slow + tO,fast),

R⃗∗ = R+ D⃗ · (tR,slow + tR,fast)−O − D⃗ · (tO,slow + tO,fast)

≈ (R−O) + (Dx · (tR,slow − tO,slow), Dy · (tR,slow − tO,slow + tR,fast − tO,slow))

= (Rx, Ry) +

(
Dx · Rx

Vslow −Dx
, Dy ·

[
Rx

Vslow −Dx
+

1

Vfast −Dy

[
Ry +

Dy

Vslow −Dx
Rx

]])
.

This can be re-written as a matrix equation,

(R⃗∗)T =

[
[1 +Dx/(Vslow −Dx)] 0

Dy/(Vslow −Dx) ∗ [1 +Dy/(Vfast −Dy)] [1 +Dy/(Vfast −Dy)]

]
R⃗T . (S5)

Summary

The linear transformation T due to relative drift (for fast axis Y, slow axis X) and Forward direction,

T (fast - Y, slow - X, Forward) =

[
[1 +Dx/(Vslow −Dx)] 0

Dy/(Vslow −Dx) ∗ [1 +Dy/(Vfast −Dy)] [1 +Dy/(Vfast −Dy)]

]
. (S6)

For fast axis Y and slow axis X, Vfast = 2Lyf > 0, Vslow = Lxf/N > 0 where (Lx, Ly) are the X and Y dimensions

of the scan area, f is the line scan rate and N is the number of lines. D⃗ = (Dx, Dy) is the relative drift velocity.
Repeating the calculation for Backward direction (essentially Vslow → −Vslow),

T (fast - Y, slow - X, Backward) =

[
[1−Dx/(Vslow +Dx)] 0

−Dy/(Vslow +Dx) ∗ [1 +Dy/(Vfast −Dy)] [1 +Dy/(Vfast −Dy)]

]
. (S7)

Finally, one can repeat the calculation with fast axis X and slow axis Y to find

T (fast - X, slow - Y, Forward) =

[
[1 +Dx/(Vfast −Dx)] Dx/(Vslow −Dy) ∗ [1 +Dx/(Vfast −Dx)]

0 [1 +Dy/(Vslow −Dy)]

]
. (S8)
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FIG. S6. The distribution of tip velocities for the X and Y axis when extracted from the sensor data. a shows the speed
distribution for the first slow Y Axis scan, b) for the first slow X Axis scan and c) for the first slow X Axis scan of the second
set.

Explanation of the Tip Velocity estimation

The fast and slow tip velocities are estimated by fitting a first-order polynomial (mx + b) to each linecut of the
X and Y sensors. For a 512 x 512 scan, this yields 512 values for the slope, which represent the estimated velocities.
The mean (µ) of these values is treated as the nominal tip velocity, and the empirical standard deviation (σ) is used
as the uncertainty.

µ =
1

N

N∑
i=1

mi (S9)

σ =
1

N − 1

N∑
i=1

(µ−mi)
2 (S10)
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where mi is the slope of the i-th linecut, and N is the number of linecuts. The distribution for the speed values
can be seen in Figure S6.

Discussion of position sensors/scan window drift

Our analysis of drift assumes that the scanning probe always rasters the same window above the sample when
performing successive scans. We found that the average values of the X/Y position sensors were slowly changing
during successive scans. An example of this behavior is shown in Figure S7. We interpret the average value of the
X/Y position sensors as being representative of the center of the scan window. This means our scan window is not
exactly the same between the successive scans. In order to compare equivalent scan windows for calibrating drift, we
only analyze regions of the sample where there is overlap between all the scan windows.

a) b)

FIG. S7. Drifting position sensors/ scan window. The average value of (a) the X position sensor and (b) the Y position
sensor. Points on the vertical lines denote scans with slow scan direction of positive slow axis); scans with slow scan direction of
negative slow axis are interleaved. Here the slow axis is X. In (a), we see an alternating behavior in the average value of the X
sensor. In (b), we see a constant increase in the average value of the Y sensor. We interpret these changes to be representative
of a slow change in the center of the scan window.

Explanation of drift velocity estimation

The values for the drift can be estimated by solving the following formula:

T−1(Vifast
, Vislow , Dfast, Dslow)Pj,i = T−1(Vi+1fast

, Vi+1slow , Dfast, Dslow)Pj,i+1 (S11)

∀i, j (S12)

where T is the corresponding drift transformation matrix, Vifast
and Vislow are the fast and slow tip velocities of

the i-th scan, and Pj,i is the j-th autocorrelation peak of the i-th scan. Each scan has 6 autocorrelation peaks, which
are the first 6 peaks measured from the middle.

These peaks have an associated uncertainty in their position of σ = ± 1.5√
3
pixels. This value is chosen because

multiple sources of uncertainty influence the true uncertainty. By choosing ± 1.5√
3
pixels, we effectively assert that the

true position is uniformly distributed in a 3x3 pixel square around the detected peak position. This is then converted
to a Gaussian sigma value by dividing half the range of the uniform distribution by

√
3.

To solve for the drift velocity formula, it is rewritten into the following objective:

minimize
∑
i,j

T−1
i Pi,j − T−1

i+1Pj,i+1 (S13)
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FIG. S8. The distribution of the optimal drift values and the loss values for the optimizer after sampling the Peak position and
tip velocities 10,000 times for the slow x axis scan. a) shows the Drift distribution for the slow axis Y, b) for slow axis X and
c) for another slow axis X scan. The loss values for the optimizer are displayed to show that the parameters have converged
and the optimal value has been found. The loss used is the Mean Squared Error (MSE). The loss did not converge to 0, but
this is to be expected as the peak positions are noisy, thus it is not possible to reach an MSE loss of 0. We fitted gaussians to
the distributions of the drift to extract the uncertainties for the drift.

This objective is optimized using gradient-based optimization. This alone does not yield uncertainties on the
parameters. To propagate the uncertainties of the autocorrelation peaks locations and the uncertainties on the tip
velocities to the drift, we use Monte Carlo simulation. The idea behind Monte Carlo simulation is to treat the input
parameters as random variables (RVs) and sample from them according to their distribution. By sampling the RVs,
we always get a different optimal value. The more we sample, the more accurately we can determine the distribution
of the optimal drift parameter, giving us a value for the uncertainties on the drift. We sample the RVs 10,000 times
and optimize the objective S13. The resulting distribution of the optimal drift values can be seen in Figure S8.
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FIG. S9. The distribution of the parameters for the global angle (α), twist angle (θ), strain angle (ϕ) and strain (ϵ) with
plotted gaussian distributions for all scans with slow X axis. Each row of plots indicates one scan, while each column indicates
the parameters. For each scan we ran the monte carlo simulation 1000 times to obtain statistics over the parameters. We can
see that the final optimal parameters are gaussian distributed.

Explanation of Twist Angle Estimation

The global angle (α), twist angle (θ), strain angle (ϕ) and heterostrain (ϵ) can be obtained by solving the following
formula:
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R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(S14)

S(θ, ϵ) = R(θ)T
(
I + ϵ ·

[
1 0
0 −0.16

])
R(θ) (S15)

R(α)[R(θ)S(ϕ, ϵ)Gi −Gi] = Mi ∀i ∈ [1, 2] (S16)

where Gi are the graphene lattice vectors in K-space, Mi are the moiré vectors in K-space, α is the global rotation
of the lattice vectors, θ is the relative twist angle of the lattices, ϕ is the strain angle, and ϵ is the strain.
As the position of the moiré peaks is noisy, we use not just 2 Moiré peaks from the autocorrelation but the 6 closest

to the center. These peaks represent the moiré vectors in real space, so we first transform them to k-space using the
following formula:

A =
1

2π
B−1 (S17)

where A is a matrix with the K-space vectors as columns and B is a matrix with real space vectors as rows.
As it is only possible to transform pairs of moiré vectors to K-space, we use all possible independent pairs of Moiré

vectors, totaling 12. This gives us a total of 48 equations to solve for. Equation S16 is then rewritten into the following
objective:

minimize
∑
i

R(α)[R(θ)S(ϕ, ϵ)− I]Gi −Mi (S18)

This objective is optimized using a gradient-based optimizer. We again use the Monte Carlo method to propagate
the uncertainties to the parameters. The resulting distribution for α, θ, ϕ and ϵ can be seen in figure S9.

Monte Carlo generally works very well for non-degenerate problems, but due to very low strain (≈ 0.01%), the
strain matrix (S(ϕ, ϵ)) collapses to an identity matrix (I). This results in the following formula for the strain matrix:

S(θ) = R(θ)TR(θ) = I (S19)

Here we see that any value for the strain angle (θ) is a valid parameter, as any value will result in an identity matrix.
In this case, the Monte Carlo simulation does not return a valid uncertainty for the strain angle. Furthermore, this
makes the optimized value dependent on the starting parameters, making the computed uncertainties for the strain
angle unreliable at such low strain. As the other parameters (α, ϕ, ϵ) are not degenerate, their estimates of the
uncertainties are reliable.



20

Additional Data: varying line scan rate
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FIG. S10. The extracted moiré wavelengths for measurement Set 3 of Table I in the main text. Data were acquired immediately
after Set 2 with slow axis X and a line scan rate of 4 Hz. Before drift correction (red markers), the extracted wavelengths for
(c) are outside the 1% wavelength error (compare to Figure 2f of the main text.) This is expected since individual scans in
Set 3 took twice as long compared to Set 2, so the effect of relative drift between sample and probe is enhanced. After drift
correction, the average wavelengths of moiré lattice vectors are are consistent between Sets 2 and 3.

Scanning with Slow Axis X (Second Set)
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FIG. S11. The extracted TBG twist angle and heterostrain magnitude for measurement Set 3 (Figure S10) before and after
drift correction. The average TBG twist angle and heterostrain is consistent with Sets 1 and 2 after drift correction (see main
text).
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